
PkPass Documentation
Release 2.2.7

Noah Ginsburg, Ryan Adamson

Feb 21, 2023

Contents

1 Overview 1

2 x509 Certificate Repository 3

3 Password Repository 5
3.1 Setup . 5
3.2 Commands . 6
3.3 General Usage . 19
3.4 Configuration . 20
3.5 Development and Testing . 23
3.6 Software Dependencies . 24
3.7 Windows Consideration . 24

i

ii

CHAPTER 1

Overview

This is a basic password store and password manager for maintaining arbitrary secrets.

The password management solution provides:

• Encryption at Rest

• Password distribution/organization based on definable hierarchies

• Password creation timestamps

• Password history and change logs

• Distributed backup capabilities

• PIV/Smartcard Credential encryption/decryption

• Import and export functionality

Passwords that are created are distributed to recipients by public key encryption. The x509 certificate of the intended
recipient is used to create an encrypted copy of the distributed password that is then saved in a password-specific git
repository. Multiple encrypted copies of the secret are created, one for each user. End users then check out the git repo
and are able to read passwords using their PIV/Smartcard credential to decrypt.

1

PkPass Documentation, Release 2.2.7

2 Chapter 1. Overview

CHAPTER 2

x509 Certificate Repository

PKPass needs a trusted x509 certificate repository, which typically is managed using git. Certificates in this repository
should all be signed by Certificate Authorities that can be found in the CABundle file that PKPass is configured to
look at. Since this repository should be considered ‘trusted’, it is typically managed by a smaller trusted set of site
administrators. PKPass validates all encryption certificates as they are used to make sure they are signed by a trusted
Certificate Authority (CA).

You may also use a local x509 certificate repository that you sync with others using RSYNC, NFS, shared volumes,
etc. You can configure the directory that pkpass will use for the certificate repository either on the command line, or
through the .pkpassrc file.

The CABundle file to use can also be configured in the .pkpassrc file or on the command line.

Additionally, certificates should be named <username>.cert. For example, the certificate for user ‘jason’ should be
named ‘jason.cert’ inside this x509 directory.

3

PkPass Documentation, Release 2.2.7

4 Chapter 2. x509 Certificate Repository

CHAPTER 3

Password Repository

PKPass also needs a directory to serve as a ‘password database’. Like the x509 certificate repository, it is also typically
managed with git to provide change control, history, and tracking of changes. Local directories can also be used and
shared via rsync, NFS, shared volumes, etc if preferred.

To change the default password repository, you may specify another directory on the command line or in the .pkpassrc
file.

3.1 Setup

Pip install is available via:

pip install pkpass-olcf

Brew install is available via:

brew install olcf/tap/pkpass

You may clone the pkpass.py tool like this:

git clone https://github.com/olcf/pkpass.git

If you are using additional PIV/X509 certificate repositories or password repositories, you will need to create local
directories for them, or create repositories in a git server that you have access to. Note that while the passwords are
safely encrypted and can be distributed without fear of compromise, there may be other information such as system
names, account names, and personnel information that you do not want to be publicly available.

3.1.1 RC file

Pkpass has an RC file that can store default values for you so you don’t have to write an essay everytime you want to
look at or create passwords.

An example file is below

5

PkPass Documentation, Release 2.2.7

certpath: /Users/username/passdb/certs/
keypath: /Users/username/passdb/keys/
cabundle: /Users/username/passdb/cabundles/ca.bundle
pwstore: /Users/username/passdb/passwords/

In this case, ‘passdb’ is the name of the directory in the user’s home area that contains x509 certificates, keys (if
necessary) and the ca bundle.

The RC file can store any command line argument that is not a true/false value. See Configuration for more details

3.1.2 CA Bundle

You can create a ca bundle by combining all CA Certificates that you trust into one file and moving the file to the
cabundle path. Usually the site admins create this CA Bundle for users as part of their certificate management practices.
Example

cd "${directory_with_ca_certs}"
cat * > ca.bundle
cp ca.bundle "${cabundle_path_in_rc_file}"

Additionally, note that most options you can pass on the command line may be passed in through the .pkpassrc file as
well. true/false options however (such as –noverify or –nocache), cannot at this time be passed into the command like

3.2 Commands

The Commands can be listed out by passing the help flag to pkpass as seen below

usage: pkpass.py [-h] [--config CONFIG] [--version]
{card,clip,create,delete,distribute,export,generate,import,info,list,

→˓listrecipients,modify,recover,rename,show,update,interpreter}
...

Public Key Password Manager

positional arguments:
{card,clip,create,delete,distribute,export,generate,import,info,list,listrecipients,

→˓modify,recover,rename,show,update,interpreter}
sub-commands

card List the available cards and which card you have
selected

clip Copy a password to clipboard
create Create a new password entry and encrypt it for

yourself
delete Delete a password in the repository
distribute Distribute existing password entry/ies to another

entity [matching uses python fnmatch]
export Export passwords that you have access to and encrypt

with aes
generate Generate a new password entry and encrypt it for

yourself
import Import passwords that you have saved to a file
info Create a new password entry and encrypt it for

yourself
list List passwords you have access to

(continues on next page)

6 Chapter 3. Password Repository

PkPass Documentation, Release 2.2.7

(continued from previous page)

listrecipients List the recipients that pkpass knows about
modify Modify the metadata of a password
recover Recover a password that has been distributed using

escrow functions
rename Rename a password in the repository
show Display a password
update Change a password value and redistribute to recipients
interpreter Interactive mode for pkpass

optional arguments:
-h, --help show this help message and exit
--config CONFIG Path to a PKPass configuration file. Defaults to

'~/.pkpassrc'
--version Show the version of PkPass and exit

3.2.1 Card

Card lists out available card slots and the currently chosen one

usage: pkpass.py card [-h] [--cabundle CABUNDLE] [--certpath CERTPATH]
[--color COLOR] [-i IDENTITY] [--no-cache] [-q]
[--theme-map THEME_MAP] [-v]

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-i IDENTITY, --identity IDENTITY

Override identity of user running the program
--no-cache if using a connector, pull the certs again
-q, --quiet quiet output (show errors only)
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.2.2 Clip

The intent of clip is to copy a password to your clipboard on the unlock event, currently we are aware of a bug with
linux systems

usage: pkpass.py clip [-h] [--cabundle CABUNDLE] [-c CARD_SLOT]
[--certpath CERTPATH] [--color COLOR] [-i IDENTITY]
[--keypath KEYPATH] [--no-cache] [--nopassphrase]
[--noverify] [--pwstore PWSTORE] [-q] [--stdin]
[--theme-map THEME_MAP] [-t TIME] [-v]
[pwname]

positional arguments:
pwname Name of the password. Ex:

passwords/team/infrastructure/root

(continues on next page)

3.2. Commands 7

PkPass Documentation, Release 2.2.7

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
-c CARD_SLOT, --card_slot CARD_SLOT

The slot number of the card that should be used
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-i IDENTITY, --identity IDENTITY

Override identity of user running the program
--keypath KEYPATH Path to directory containing private keys. Keys must

end in '.key'
--no-cache if using a connector, pull the certs again
--nopassphrase, --nopin

Do not prompt for a pin/passphrase
--noverify Do not verify certificates and signatures
--pwstore PWSTORE, --srcpwstore PWSTORE

Path to the source password store. Defaults to
"./passwords"

-q, --quiet quiet output (show errors only)
--stdin Take all password input from stdin instead of from a

user input prompt
--theme-map THEME_MAP

Map of colors to use for colorized output
-t TIME, --time TIME Number of seconds to keep password in paste buffer
-v, --verbose verbose output (repeat for increased verbosity)

3.2.3 Create

Create is used to create a password in the configured password repository

usage: pkpass.py create [-h] [--cabundle CABUNDLE] [-c CARD_SLOT]
[--certpath CERTPATH] [--color COLOR]
[-e ESCROW_USERS] [-i IDENTITY] [--keypath KEYPATH]
[-m MIN_ESCROW] [--no-cache] [--noescrow]
[--nopassphrase] [--nosign] [--overwrite]
[--pwstore PWSTORE] [-q] [--stdin]
[--theme-map THEME_MAP] [-v]
[pwname]

positional arguments:
pwname Name of the password. Ex:

passwords/team/infrastructure/root

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
-c CARD_SLOT, --card_slot CARD_SLOT

The slot number of the card that should be used
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-e ESCROW_USERS, --escrow_users ESCROW_USERS

Escrow users list is a comma sepearated list of
recovery users that each get part of a key

(continues on next page)

8 Chapter 3. Password Repository

PkPass Documentation, Release 2.2.7

(continued from previous page)

-i IDENTITY, --identity IDENTITY
Override identity of user running the program

--keypath KEYPATH Path to directory containing private keys. Keys must
end in '.key'

-m MIN_ESCROW, --min_escrow MIN_ESCROW
Minimum number of users required to unlock escrowed
password

--no-cache if using a connector, pull the certs again
--noescrow Do not use escrow functionality, ignore defaults in rc

file
--nopassphrase, --nopin

Do not prompt for a pin/passphrase
--nosign Do not digitally sign the password information that

you are generating
--overwrite Overwrite a password that already exists
--pwstore PWSTORE, --srcpwstore PWSTORE

Path to the source password store. Defaults to
"./passwords"

-q, --quiet quiet output (show errors only)
--stdin Take all password input from stdin instead of from a

user input prompt
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.2.4 Delete

Delete a password in the repository; pkpass will ask for confirmation. A user could also just remove the file. This is
mostly just to allow testing to be a little faster

usage: pkpass.py delete [-h] [--cabundle CABUNDLE] [-c CARD_SLOT]
[--certpath CERTPATH] [--color COLOR] [-i IDENTITY]
[--keypath KEYPATH] [--no-cache] [--overwrite]
[--pwstore PWSTORE] [-q] [--stdin]
[--theme-map THEME_MAP] [-v]
[pwname]

positional arguments:
pwname Name of the password. Ex:

passwords/team/infrastructure/root

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
-c CARD_SLOT, --card_slot CARD_SLOT

The slot number of the card that should be used
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-i IDENTITY, --identity IDENTITY

Override identity of user running the program
--keypath KEYPATH Path to directory containing private keys. Keys must

end in '.key'
--no-cache if using a connector, pull the certs again
--overwrite Overwrite a password that already exists

(continues on next page)

3.2. Commands 9

PkPass Documentation, Release 2.2.7

(continued from previous page)

--pwstore PWSTORE, --srcpwstore PWSTORE
Path to the source password store. Defaults to
"./passwords"

-q, --quiet quiet output (show errors only)
--stdin Take all password input from stdin instead of from a

user input prompt
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.2.5 Distribute

Distribute takes a pre-existing password in the password repository and grants permission to selected users to be able
to unlock it This function resolves filename matching via python’s fnmatch module, depending on the string you may
need to pass the value through in single quotes

This function will confirm password list is valid even if only one password matches

usage: pkpass.py distribute [-h] [--cabundle CABUNDLE] [-c CARD_SLOT]
[--certpath CERTPATH] [--color COLOR]
[-e ESCROW_USERS] [-g GROUPS] [-i IDENTITY]
[--keypath KEYPATH] [-m MIN_ESCROW] [--no-cache]
[--noescrow] [--nopassphrase] [--nosign]
[--pwstore PWSTORE] [-q] [--stdin]
[--theme-map THEME_MAP] [-u USERS] [-v]
[pwname]

positional arguments:
pwname Name of the password. Ex:

passwords/team/infrastructure/root

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
-c CARD_SLOT, --card_slot CARD_SLOT

The slot number of the card that should be used
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-e ESCROW_USERS, --escrow_users ESCROW_USERS

Escrow users list is a comma sepearated list of
recovery users that each get part of a key

-g GROUPS, --groups GROUPS
Comma seperated list of recipient groups

-i IDENTITY, --identity IDENTITY
Override identity of user running the program

--keypath KEYPATH Path to directory containing private keys. Keys must
end in '.key'

-m MIN_ESCROW, --min_escrow MIN_ESCROW
Minimum number of users required to unlock escrowed
password

--no-cache if using a connector, pull the certs again
--noescrow Do not use escrow functionality, ignore defaults in rc

file
--nopassphrase, --nopin

(continues on next page)

10 Chapter 3. Password Repository

PkPass Documentation, Release 2.2.7

(continued from previous page)

Do not prompt for a pin/passphrase
--nosign Do not digitally sign the password information that

you are generating
--pwstore PWSTORE, --srcpwstore PWSTORE

Path to the source password store. Defaults to
"./passwords"

-q, --quiet quiet output (show errors only)
--stdin Take all password input from stdin instead of from a

user input prompt
--theme-map THEME_MAP

Map of colors to use for colorized output
-u USERS, --users USERS

Comma seperated list of recipients
-v, --verbose verbose output (repeat for increased verbosity)

3.2.6 Export

Export allows the current user to migrate all his passwords to one file, this tends to be used in conjunction with import

usage: pkpass.py export [-h] [--cabundle CABUNDLE] [-c CARD_SLOT]
[--certpath CERTPATH] [--color COLOR]
[-i IDENTITY] [--no-cache]
[--nocrypto] [--nopassphrase] [-q] [--stdin]
[--theme-map THEME_MAP] [-v]
[pwfile]

positional arguments:
pwfile path to the import/export file

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
-c CARD_SLOT, --card_slot CARD_SLOT

The slot number of the card that should be used
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-i IDENTITY, --identity IDENTITY

Override identity of user running the program
--no-cache if using a connector, pull the certs again
--nocrypto Do not use a password for import/export files
--nopassphrase, --nopin

Do not prompt for a pin/passphrase
-q, --quiet quiet output (show errors only)
--stdin Take all password input from stdin instead of from a

user input prompt
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.2.7 Generate

Generate allows a user to specify a password name and to have the pkpass system generate it based on a regular
expression an example rules_map could look like the following

3.2. Commands 11

PkPass Documentation, Release 2.2.7

usage: pkpass.py generate [-h] [--cabundle CABUNDLE] [-c CARD_SLOT]
[--certpath CERTPATH] [--color COLOR]
[-e ESCROW_USERS] [-i IDENTITY] [--keypath KEYPATH]
[-m MIN_ESCROW] [--no-cache] [--noescrow]
[--nopassphrase] [--nosign] [--overwrite]
[--pwstore PWSTORE] [-q] [-R RULES]
[--rules-map RULES_MAP] [--stdin]
[--theme-map THEME_MAP] [-v]
[pwname]

positional arguments:
pwname Name of the password. Ex:

passwords/team/infrastructure/root

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
-c CARD_SLOT, --card_slot CARD_SLOT

The slot number of the card that should be used
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-e ESCROW_USERS, --escrow_users ESCROW_USERS

Escrow users list is a comma sepearated list of
recovery users that each get part of a key

-i IDENTITY, --identity IDENTITY
Override identity of user running the program

--keypath KEYPATH Path to directory containing private keys. Keys must
end in '.key'

-m MIN_ESCROW, --min_escrow MIN_ESCROW
Minimum number of users required to unlock escrowed
password

--no-cache if using a connector, pull the certs again
--noescrow Do not use escrow functionality, ignore defaults in rc

file
--nopassphrase, --nopin

Do not prompt for a pin/passphrase
--nosign Do not digitally sign the password information that

you are generating
--overwrite Overwrite a password that already exists
--pwstore PWSTORE, --srcpwstore PWSTORE

Path to the source password store. Defaults to
"./passwords"

-q, --quiet quiet output (show errors only)
-R RULES, --rules RULES

Key of rules to use from provided rules map
--rules-map RULES_MAP

Map of rules used for automated generation of
passwords

--stdin Take all password input from stdin instead of from a
user input prompt

--theme-map THEME_MAP
Map of colors to use for colorized output

-v, --verbose verbose output (repeat for increased verbosity)

12 Chapter 3. Password Repository

PkPass Documentation, Release 2.2.7

3.2.8 Import

Import allows a user to take an exported password file and import them into a new smart card

usage: pkpass.py import [-h] [--cabundle CABUNDLE] [-c CARD_SLOT]
[--certpath CERTPATH] [--color COLOR]
[-i IDENTITY] [--no-cache]
[--nocrypto] [--nopassphrase] [-q] [--stdin]
[--theme-map THEME_MAP] [-v]
[pwfile]

positional arguments:
pwfile path to the import/export file

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
-c CARD_SLOT, --card_slot CARD_SLOT

The slot number of the card that should be used
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-i IDENTITY, --identity IDENTITY

Override identity of user running the program
--no-cache if using a connector, pull the certs again
--nocrypto Do not use a password for import/export files
--nopassphrase, --nopin

Do not prompt for a pin/passphrase
-q, --quiet quiet output (show errors only)
--stdin Take all password input from stdin instead of from a

user input prompt
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.2.9 Info

Info displays metadata to the user about a given password

usage: pkpass.py info [-h] [--cabundle CABUNDLE] [--certpath CERTPATH]
[--color COLOR] [-i IDENTITY] [--no-cache]
[--pwstore PWSTORE] [-q] [--theme-map THEME_MAP] [-v]
[pwname]

positional arguments:
pwname Name of the password. Ex:

passwords/team/infrastructure/root

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-i IDENTITY, --identity IDENTITY

Override identity of user running the program

(continues on next page)

3.2. Commands 13

PkPass Documentation, Release 2.2.7

(continued from previous page)

--no-cache if using a connector, pull the certs again
--pwstore PWSTORE, --srcpwstore PWSTORE

Path to the source password store. Defaults to
"./passwords"

-q, --quiet quiet output (show errors only)
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.2.10 Interpreter

Creates an interactive session, the default behavior of pkpass if no arguments are passed

usage: pkpass.py interpreter [-h] [--cabundle CABUNDLE] [-c CARD_SLOT]
[--certpath CERTPATH] [--color COLOR]
[--connect CONNECT] [-e ESCROW_USERS] [-g GROUPS]
[-i IDENTITY] [--keypath KEYPATH] [-m MIN_ESCROW]
[--no-cache] [--pwstore PWSTORE] [-q]
[--theme-map THEME_MAP] [-v]

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
-c CARD_SLOT, --card_slot CARD_SLOT

The slot number of the card that should be used
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
--connect CONNECT Connection string for the api to retrieve certs
-e ESCROW_USERS, --escrow_users ESCROW_USERS

Escrow users list is a comma sepearated list of
recovery users that each get part of a key

-g GROUPS, --groups GROUPS
Comma seperated list of recipient groups

-i IDENTITY, --identity IDENTITY
Override identity of user running the program

--keypath KEYPATH Path to directory containing private keys. Keys must
end in '.key'

-m MIN_ESCROW, --min_escrow MIN_ESCROW
Minimum number of users required to unlock escrowed
password

--no-cache if using a connector, pull the certs again
--pwstore PWSTORE, --srcpwstore PWSTORE

Path to the source password store. Defaults to
"./passwords"

-q, --quiet quiet output (show errors only)
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.2.11 List

List shows all passwords available to a given user

14 Chapter 3. Password Repository

PkPass Documentation, Release 2.2.7

usage: pkpass.py list [-h] [--cabundle CABUNDLE] [--certpath CERTPATH]
[--color COLOR] [-f FILTER] [-i IDENTITY] [--no-cache]
[--pwstore PWSTORE] [-q] [-r] [--stdin]
[--theme-map THEME_MAP] [-v]

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-f FILTER, --filter FILTER

Reduce output of commands to matching items
-i IDENTITY, --identity IDENTITY

Override identity of user running the program
--no-cache if using a connector, pull the certs again
--pwstore PWSTORE, --srcpwstore PWSTORE

Path to the source password store. Defaults to
"./passwords"

-q, --quiet quiet output (show errors only)
-r, --recovery Work with passwords distributed through escrow

functionality
--stdin Take all password input from stdin instead of from a

user input prompt
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.2.12 Listrecipients

List the recipients that pkpass knows about

usage: pkpass.py listrecipients [-h] [--cabundle CABUNDLE]
[--certpath CERTPATH] [--color COLOR]
[-f FILTER] [-i IDENTITY] [--no-cache] [-q]
[--stdin] [--theme-map THEME_MAP] [-v]

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-f FILTER, --filter FILTER

Reduce output of commands to matching items
-i IDENTITY, --identity IDENTITY

Override identity of user running the program
--no-cache if using a connector, pull the certs again
-q, --quiet quiet output (show errors only)
--stdin Take all password input from stdin instead of from a

user input prompt
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.2. Commands 15

PkPass Documentation, Release 2.2.7

3.2.13 Modify

Modify the metadata of a given password

usage: pkpass.py modify [-h] [--cabundle CABUNDLE] [--certpath CERTPATH]
[--color COLOR] [-i IDENTITY] [--no-cache]
[--pwstore PWSTORE] [-q] [--theme-map THEME_MAP] [-v]
[pwname]

positional arguments:
pwname Name of the password. Ex:

passwords/team/infrastructure/root

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-i IDENTITY, --identity IDENTITY

Override identity of user running the program
--no-cache if using a connector, pull the certs again
--pwstore PWSTORE, --srcpwstore PWSTORE

Path to the source password store. Defaults to
"./passwords"

-q, --quiet quiet output (show errors only)
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.2.14 Recover

Recover serves the purpose of recovering escrowed passwords in the event no one in the distributed list can properly
unlock a password. This requires password owners to have created escrow users. Each necessary escrow user will
place his share into the program.

usage: pkpass.py recover [-h] [--cabundle CABUNDLE] [--certpath CERTPATH]
[--color COLOR] [-e ESCROW_USERS] [-i IDENTITY]
[--keypath KEYPATH] [-m MIN_ESCROW] [--no-cache]
[--nosign] [--pwstore PWSTORE] [-q]
[--theme-map THEME_MAP] [-v]

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-e ESCROW_USERS, --escrow_users ESCROW_USERS

Escrow users list is a comma sepearated list of
recovery users that each get part of a key

-i IDENTITY, --identity IDENTITY
Override identity of user running the program

--keypath KEYPATH Path to directory containing private keys. Keys must
end in '.key'

-m MIN_ESCROW, --min_escrow MIN_ESCROW

(continues on next page)

16 Chapter 3. Password Repository

PkPass Documentation, Release 2.2.7

(continued from previous page)

Minimum number of users required to unlock escrowed
password

--no-cache if using a connector, pull the certs again
--nosign Do not digitally sign the password information that

you are generating
--pwstore PWSTORE, --srcpwstore PWSTORE

Path to the source password store. Defaults to
"./passwords"

-q, --quiet quiet output (show errors only)
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.2.15 Rename

This renames a password in the given repository

usage: pkpass.py rename [-h] [--cabundle CABUNDLE] [-c CARD_SLOT]
[--certpath CERTPATH] [--color COLOR] [-i IDENTITY]
[--keypath KEYPATH] [--no-cache] [--nopassphrase]
[--overwrite] [--pwstore PWSTORE] [-q] [--stdin]
[--theme-map THEME_MAP] [-v]
[pwname] [rename]

positional arguments:
pwname Name of the password. Ex:

passwords/team/infrastructure/root
rename New name of the password.

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
-c CARD_SLOT, --card_slot CARD_SLOT

The slot number of the card that should be used
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-i IDENTITY, --identity IDENTITY

Override identity of user running the program
--keypath KEYPATH Path to directory containing private keys. Keys must

end in '.key'
--no-cache if using a connector, pull the certs again
--nopassphrase, --nopin

Do not prompt for a pin/passphrase
--overwrite Overwrite a password that already exists
--pwstore PWSTORE, --srcpwstore PWSTORE

Path to the source password store. Defaults to
"./passwords"

-q, --quiet quiet output (show errors only)
--stdin Take all password input from stdin instead of from a

user input prompt
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.2. Commands 17

PkPass Documentation, Release 2.2.7

3.2.16 Show

This unlocks a password and displays it on stdout

usage: pkpass.py show [-h] [-a] [-b BEHALF] [--cabundle CABUNDLE]
[-c CARD_SLOT] [--certpath CERTPATH] [--color COLOR]
[-i IDENTITY] [-I] [--keypath KEYPATH] [--no-cache]
[--nopassphrase] [--noverify] [--pwstore PWSTORE] [-q]
[-r] [--stdin] [--theme-map THEME_MAP] [-v]
[pwname]

positional arguments:
pwname Name of the password. Ex:

passwords/team/infrastructure/root

optional arguments:
-h, --help show this help message and exit
-a, --all Show all available password to the given user, if a

pwname is supplied filtering will be done case-
insensitivey based on the filename

-b BEHALF, --behalf BEHALF
Show passwords for a user using a password as its
private key

--cabundle CABUNDLE Path to CA certificate bundle file
-c CARD_SLOT, --card_slot CARD_SLOT

The slot number of the card that should be used
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-i IDENTITY, --identity IDENTITY

Override identity of user running the program
-I, --ignore-decrypt Ignore decryption errors during show all process
--keypath KEYPATH Path to directory containing private keys. Keys must

end in '.key'
--no-cache if using a connector, pull the certs again
--nopassphrase, --nopin

Do not prompt for a pin/passphrase
--noverify Do not verify certificates and signatures
--pwstore PWSTORE, --srcpwstore PWSTORE

Path to the source password store. Defaults to
"./passwords"

-q, --quiet quiet output (show errors only)
-r, --recovery Work with passwords distributed through escrow

functionality
--stdin Take all password input from stdin instead of from a

user input prompt
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.2.17 Update

This changes a password value and redistributes the password to the recipients

usage: pkpass.py update [-h] [--cabundle CABUNDLE] [-c CARD_SLOT]
[--certpath CERTPATH] [--color COLOR]

(continues on next page)

18 Chapter 3. Password Repository

PkPass Documentation, Release 2.2.7

(continued from previous page)

[-e ESCROW_USERS] [-i IDENTITY] [--keypath KEYPATH]
[-m MIN_ESCROW] [--no-cache] [--noescrow]
[--nopassphrase] [--nosign] [--overwrite]
[--pwstore PWSTORE] [-q] [--stdin]
[--theme-map THEME_MAP] [-v]
[pwname]

positional arguments:
pwname Name of the password. Ex:

passwords/team/infrastructure/root

optional arguments:
-h, --help show this help message and exit
--cabundle CABUNDLE Path to CA certificate bundle file
-c CARD_SLOT, --card_slot CARD_SLOT

The slot number of the card that should be used
--certpath CERTPATH Path to directory containing public keys. Certificates

must end in '.cert'
--color COLOR Disable color or not, accepts true/false
-e ESCROW_USERS, --escrow_users ESCROW_USERS

Escrow users list is a comma sepearated list of
recovery users that each get part of a key

-i IDENTITY, --identity IDENTITY
Override identity of user running the program

--keypath KEYPATH Path to directory containing private keys. Keys must
end in '.key'

-m MIN_ESCROW, --min_escrow MIN_ESCROW
Minimum number of users required to unlock escrowed
password

--no-cache if using a connector, pull the certs again
--noescrow Do not use escrow functionality, ignore defaults in rc

file
--nopassphrase, --nopin

Do not prompt for a pin/passphrase
--nosign Do not digitally sign the password information that

you are generating
--overwrite Overwrite a password that already exists
--pwstore PWSTORE, --srcpwstore PWSTORE

Path to the source password store. Defaults to
"./passwords"

-q, --quiet quiet output (show errors only)
--stdin Take all password input from stdin instead of from a

user input prompt
--theme-map THEME_MAP

Map of colors to use for colorized output
-v, --verbose verbose output (repeat for increased verbosity)

3.3 General Usage

Run ./pkpass.py with the ‘-h’ flag for a list of options as well as syntax. Some common usage examples follow:

• Create a new security team root password in the password store:

3.3. General Usage 19

PkPass Documentation, Release 2.2.7

./pkpass.py create security-team/rootpw

• Distribute the security team root password to other team members ‘foo’ and ‘bar’:

./pkpass.py distribute security-team/rootpw -u foo,bar

• Distribute the security team passwords to the group secadmins

./pkpass.py distribute 'security-team/*' -g secadmins

• List the names of all passwords that have been distributed to you:

./pkpass.py list

• List the names of all escrow passwords that have been distributed to you:

./pkpass.py list -r

• Show the infrastructure team root password:

./pkpass.py show infra-team/rootpw

• Show all the passwords that you know:

./pkpass.py show -a

• Show all the passwords that you know whose filename has rpm (case-insensitive):

./pkpass.py show -a rpm

• List the names of all passwords that have been distributed to user identity ‘foo’:

./pkpass.py list -i foo

• Show the users that pkpass detects certificates for in the certificate repository:

./pkpass.py listrecipients

3.4 Configuration

3.4.1 Password Repository

Passwords are created on the file system, so any destination may be specified. For passwords that need to be distributed
to other users, convention suggests putting these into a hierarchy with the root in ‘passwords’. To make the repository
as flat as possible, the top level will contain mostly groupings of passwords, with the next level containing the pass-
words themselves. Examples of groups may include “security-team”, “database-users”, “passwords/general”, etc. It
is up to each organization to determine the best hierarchy for storing passwords. The ‘list’ command and ‘showall’
commands will crawl the hierarchy starting at the root regardless of structure.

You may distribute passwords to a specified group defined in your pkpassrc file. These groups may be arbitrary

databaseadmins: db1, db2,db3
secadmins: admin1, admin2 , admin3
groups: secadmins, databaseadmins

20 Chapter 3. Password Repository

PkPass Documentation, Release 2.2.7

you may also specify on the command line which groups to use: pkpass.py distribute password -g
secadmins

3.4.2 Cert Repository

Certs are read into PkPass and are used in many of the processes. This can be presented to pkpass as a directory
structure, repository, or by means of it’s connector functionality.

3.4.3 CA Bundle

The CA bundle is used to verify valid certs

3.4.4 Arguments

The RC file (location ~/.pkpassrc, ~/.pkpassrc.yaml, or ~/.pkpassrc.yml) can take the majority of PkPass’s arguments
so that you do not need to pass them through. The only ones that should not be relied upon to work properly are
arguments with ‘store_true’ or ‘store_false’ attributes. The following arguments should work in a pkpassrc file

cabundle
card_slot
certpath
color
connect
escrow_users
groups
identity
keypath
min_escrow
pwstore
rules
rules_map
theme_map
time
users

These along with user-defined groups should all work in an RC file.

3.4.5 Special Treatment for Non-piv accounts/credentials

There are some capabilities built into pkpass.py to manage passwords with rsa keys and x509 certificates without using
smart card authentication. These keys still need to be signed by a CA in the CA bundle. Create a keypair:

This will create an unsigned keypair. We really want it to create a certificate request in the future

openssl req -newkey rsa:4096 -keyout local.key -x509 -out local.cert

As long as the private and public keys are in directories that pkpass can find, distribution to those identities works
exactly the same. Keys must be named ‘username.key’. For user foo, the private key must be named ‘foo.key’ and
reside in the keypath directory.

3.4. Configuration 21

PkPass Documentation, Release 2.2.7

3.4.6 Behalf of functionality

To utilize the functionality for showing a password on behalf of another user you need to create a password that is the
private key of this user. Then when you issue a show command you specify the username with the -b flag

Example:

pkpass show password_i_dont_have_direct_access_to -b rsa_user

the argument rsa_user needs to be both the username and the password name for the password that store’s this user’s
rsa key

3.4.7 Populate other data stores

Currently Pkpass can populate puppet-eyaml given appropriate configurations:

It is suggested to have a ~/.eyaml/config.yaml setup with pkcs7_public_key: defined at the highest level of that file.

To completely configure this integration on the pkpass side please add values to your rc file that looks similar to the
following

populate:
puppet_eyaml is the definition for the `type`
puppet_eyaml:
`bin` is the location of the binary for `eyaml`
bin: /opt/puppetlabs/pdk/share/cache/ruby/2.5.0/bin/eyaml
`directory` is the directory of your puppet repo
directory: ~/git/puppet
passwords:

This level entry (`ops/password`) represents a pkpass password name
ops/password:
This level entry (`data/team/security.yaml`) represents the rest of the

→˓file path for the heira file
data/team/security.yaml:
The following list represents the keys that need to be replaced in the

→˓heira file
- some::server::password
- some:other::server

To populate kubernetes you need a similar block Currently pkpass can only generate a single encrypted value per
secret. It places the value stored in pkpass in the map where it’s name is matched.

in the following example you will see this, so for testpass pkpass will decrypt testpass and place the value of that
password in data/password because in the configuration file the value of data/password is testpass

Pkpass will then base64 encode all values in the data map and dump it as a yaml file in where output is defined, in this
case /tmp/secrets.yaml

populate:
kubernetes:
output: /tmp/secrets.yaml
passwords:
testpass:
- apiVersion: v1
type: Opaque
metadata:
name: test
namespace: testing

(continues on next page)

22 Chapter 3. Password Repository

PkPass Documentation, Release 2.2.7

(continued from previous page)

data:
password: testpass
username: someuser

- apiVersion: v1
type: Opaque
metadata:
name: test
namespace: testing2

data:
password: testpass
username: someuser

It is not recommended to store the kubernetes output file anywhere, since kubernetes secrets are just base64 encoded,
they are not secure!

other data endpoints may be requested

3.5 Development and Testing

3.5.1 Testing Scripts

Currently there exists a shell script ./test/pki/generatepki.sh that will generate certificates for a developer
to use for unittests After running this script, you can run tox or the python -m unittest discover note that
python -m unittest discover does not test multiple versions of python like tox does

3.5.2 Plugin Behavior - Connectors

We currently support dropping arbitary connection plugins into ./libpkpass/connectors the connectors
should return certificates, example usage here is if your organization stores certs in a custom web application, or
in ldap or the like, you can create a connector to interface with that and feed pkpass certs in this manner

Connectors will be ignored due to the gitignore, I recommend creating a separate repo for that purpose. To use a
connector pkpass needs a connect argument

connect:
base_directory: /path/to/local/certs # or /tmp
ConnectorName:
arbitary_argument1: aa1_value
aa2: aa2_value

This connect argument is a dictionary, the upper level key is the class that python will attempt to import. This class
name should also be in a module that is its name in all lowercase.

Example: the class ConnectorName would be in module connectorname

The value of “ConnectorName” in our example above will all be passed to init as a dictionary. this means that
“arbitrary_argument1” and “aa2” will both be available for the connector class As you can see the connect argument
is a json file, and as such; you may pass multiple connectors in at the same time.

3.5. Development and Testing 23

PkPass Documentation, Release 2.2.7

3.6 Software Dependencies

Pkpass has few dependencies. Fernet is a crypto library used to allow automatic symmetric encrypting. Fernet can be installed using pip:
pip install cryptography

Other dependencies can be found in requirements.txt

Note: All dependencies will be installed if the setup script is run.

3.7 Windows Consideration

There has not been much (if any) testing around the windows ecosystem. Coding has been attempted to comply with
portability standards; but compatibility is not guaranteed. If you need it, feel free to submit a PR

24 Chapter 3. Password Repository

	Overview
	x509 Certificate Repository
	Password Repository
	Setup
	Commands
	General Usage
	Configuration
	Development and Testing
	Software Dependencies
	Windows Consideration

